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Microsegregation in Fe-C-P Ternary 
Alloys Using a Phase-Field Model 
A phase-field model is proposed for the simulation of microstructure and solute 
concentration during the solidification process of Fe-C-P ternary alloys. A relation 
between material properties and model parameters is presented. Two-dimensional 
computation results exhibit dendrites in Fe-C-P alloys for different phosphorus 
concentrations. Alterations in the phosphorus concentration appear to affect the advance 
speed of the solid-liquid interface. Such an alteration is due to the small diffusivity of 
phosphorus during the solidification process. 
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Introduction 
1For a number of years now, appreciable attention has been paid, 

in open literature, to the simulation of dendrite growth and related 
phenomena. Several different numerical approaches were proposed 
to that end. Some works have focused on pure materials, whereas 
others took heed of binary alloys of metallurgical interest. One 
example is the work by Warren and Boettinger (1995), which 
applies the Phase-Field Method to such problems. Another approach 
employing adaptive finite elements can be found in Narski and 
Picasso (2007). At the same time, results have been published 
pertaining to phase-field modeling and simulation of anisotropy 
effects (Suwa et al., 2007) and solidification processes (Mullis, 
2006). On the other hand, some work has been performed on 
segregation in ternary alloys (Wynblatt and Landa, 1999). It is in 
this general framework that the present work is developed, with a 
focus on ternary alloys and Phase-Field Method implemented via 
finite volumes.  

Solidification is the main phenomenon taking place during 
casting. This, in turn, has long been known as a relatively 
inexpensive means for producing metal goods. Nowadays, a sizable 
portion of the concepts and methods developed over the years in 
support of the research into solidification phenomena can be 
successfully and economically translated to industrial scale. 
Noticeable improvement can thereby be achieved, insofar as the 
quality of the pieces manufactured by solidification is concerned. 
For this reason, solidification studies are not just mandatory; they 
truly are a powerful industrial tool. For conventional technologies, 
through understanding and control of the solidification process 
opens wide perspectives in terms of its economic potential, since it 
provides the shortest distance from metal input to final product. As a 
consequence, solidification is one of the most important specialties 
in Metallurgy and Materials Science.  

In-the-mold solidification of a metal, opposite to what might at 
first be surmised, is not a “passive” process in any way. On the 
contrary, the metal undergoes a liquid-to-solid transformation of 
very dynamic nature. In its course, events take place — like 
nucleation and growth of dendritic structures — which, in the 
absence of a tight control, may compromise the final output or even 
halt the manufacturing process altogether. Such events can originate 
several types of material heterogeneities which drastically affect the 
metallurgical quality of the final product. Therefore, solidification 
and the main structures arising from it — the dendrites — are 
extremely important from a practical standpoint, in that they exert a 
strong influence on the properties of the products.  
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Often, in situations that reflect more closely the conditions in 
applications, it is not feasible to obtain solutions using classical 
mathematical models of solidification. Usually, analytical solutions 
are possible only in very limited and idealized situations such as 
one-dimensional solidification, constant diffusion coefficients, 
liquid at saturation temperatures, same density and heat capacities of 
solid and liquid phases. On the other hand, even more detailed 
numerical models using classical equations can hardly resolve 
complicated two- and three-dimensional dendrite structures. Also, 
methods based on classical transport equations are found to be 
limited, when dealing with meta-stable states. Pure substances 
provide one such example, when the solidification front advances 
through a super-cooled liquid phase. Another case is that of alloy 
solidification, for instabilities of the advancing front can occur 
owing to constitutional super-cooling. In these instances, the solid-
liquid interface may develop a complex geometry, locally dependent 
on curvature, solidification speed, and possible anisotropy. For this 
reason, over the past twenty years, considerable effort has been 
applied to the ad hoc development of specialized physical and 
numerical methods.  

In particular, the Phase-Field Method has garnered wide 
acceptance, given its ability to simulate the solidification process in 
the presence of a complicated solid-liquid interface. The seminal 
work on the method is due to G. Caginalp and co-workers (Caginalp 
and Fife, 1986), dating back to the early 1980’s. A collection of 
models has stemmed from that paper, ever since. At first, the focus 
was on pure materials (Kobayashi, 1993; Kim et al., 1999; Furtado 
et al., 2006) and then, on binary alloys (Lee and Suzuki, 1999; Ode 
and Suzuki, 2002). Usually, in phase-field works, solutions to the 
equations are obtained by divided differences. For alloys, dendrite 
growth is considered at constant temperature or constant cooling 
rate. In our work, all equations were solved numerically with 
recourse to the Finite-Volume Method (Patankar, 1980). The reason 
for such a choice lies in the fact that this is a conservative method. 
The transient term of the phase field equation is discretized using an 
explicit scheme since it does not need to be solved in both the solid 
and liquid regions. It suffices to solve the equation around the 
interface. For the transient term in the energy conservation equation, 
an implicit scheme is used, owing to its unconditional numerical 
stability regardless of the size of the time step used. In all of our 
simulations, a single, stable, solid nucleus is considered to have 
been previously added to the liquid domain. Moreover, for applying 
the Phase-Field Method to the solidification of Fe-C-P ternary 
alloys, we prescribe as initial conditions the temperature and solute 
concentration, taking into account surface tension and crystal 
anisotropy effects.  

The study of the effect of phosphorus on steel was selected 
because even in small quantities it influences steel quality greatly. 
Phosphorus is generally regarded as a harmful component, given 



Alexandre Furtado Ferreira and Leonardo de Olivé Ferreira 

174 / Vol. XXXI, No. 3, July-September 2009 ABCM  

that it tends to render steels fragile, especially high-carbon steels or 
when their content goes beyond certain acceptable limits (Chalmers, 
1964). For this reason, the maximum admissible phosphorus content 
is specified.  

Nomenclature 

A = noise amplitude, dimensionless  
Cp = specific heat, J/ m3K 
D = thermal diffusivity, m2/s  
Fs = solid fraction, dimensionless  
g = models interface surface tension, dimensionless  
h = smoothing function, dimensionless 
j =  controls the number of preferential growth directions 
J = number of preferential growth directions, dimensionless 
t = time, s 
ke = equilibrium partition coefficient, dimensionless  
R = universal gas constant, J/mol.K 
t = time, s 
T = temperature, K 
Vm = molar volume, m3/mol  
W = excess free energy, J/m3 

Greek Symbols 

δε =  gauges the anisotropy, dimensionless 
∆H = latent-heat variation, J/m3 

ε = interface thickness, (J/m)1/2 
φ = order parameter, dimensionless 
λ = interface thickness, m  
θ = growth angle, deg.  
σ = interface energy, J/m2 

Subscripts 

C relative to concentration of carbon 
CL relative to concentration of carbon in the liquid region 
CS relative to concentration of carbon in the solid region 
m relative to molar concentration  
p relative to pressure 
P relative to concentration of phosphorus 
PL relative to concentration of phosphorus in the liquid region  
PS relative to concentration of phosphorus in the solid region 

Superscripts 

e equilibrium 
 

Mathematical Model 

We solve simultaneously the equations of energy, phases, and 
carbon and phosphorus concentrations. Use of the Phase-Field 
Method presupposes occurrence of growth of one or more solid 
nucleus in the bulk of the liquid phase. Here, in particular, one of 
such nucleus is assumed to grow. As a consequence, three different 
regions that exist must be considered, namely the solid and liquid 
regions as well as their interface. 

The energy equation to be integrated is (Furtado et al., 2006) 
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The term on the left-hand side represents the time variation of 

the specific thermal energy divided by the constant pressure specific 
heat. The first term on the right-hand side is the divergence of the 
heat transfer by heat diffusion (conduction) divided by the product 
of specific mass and constant pressure heat capacity, where D is the 
thermal diffusivity and T represents the temperature. The second 

term on this side is a source, where Cp is the specific heat at constant 
pressure, ∆H measures the latent-heat variation around the interface 
and h’(φ ) is the derivative of the so-called “smoothing” function, to 
be defined later. The derivative ∂φ 

 ⁄ ∂ t is the time-and-space rate of 
variation of the phase-field variable, φ.  

As for the phase equation, Ode et al. (2000) propose  
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The evolution of the solid nucleus with time (∂φ 

 ⁄ ∂ t) is assumed 
to be proportional to the variation of the free-energy functional with 
respect to the order parameter, φ. The terms of the phase equation 
are derived from this free-energy functional, which must decrease 
during any solidification process, as indicated in the article by 
Furtado et al. (2006). In Eq. (2), M quantifies the phase-field 
mobility. The product ε2∇2φ is a diffusivity term. The next 
component of the equation, wg’(φ ), factors in the excess free energy 
arising from surface tension around the interface. The last product 
on the right-hand side translates the driving force behind the 
solidification process. Here, R is the gas constant and Vm

 , the molar 
volume. The arguments to the natural logarithms, ce

CS and ce
PS, are, 

respectively, the equilibrium concentrations of carbon and 
phosphorus in the solid region. Likewise, ce

CL and ce
PL represent their 

corresponding equilibrium concentrations in the liquid phase. Their 
respective ordinary concentrations in the liquid and solid regions are 
denoted, by the pairs cCL and cPL, and cCS and cPS. The noise term in 
the right-hand side of the phase-field equation will be explained 
later.  

As proposed by Ode et al. (2000), solute concentrations in both 
regions are calculated with the solute transport equations, numbered 
(3) and (4), below.  
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In these equations, DC and DP are the carbon and phosphorus 

diffusivities in the solid and liquid regions. The model used here 
takes into account solute diffusivity in the liquid and interface 
regions.  

The system we focus on is the solid nucleus plus the liquid 
around it, plus the interface. For the Phase-Field Method, this 
system is continuously represented by the single phase-field 
variable, φ. A value φ = +1 is associated with a solid nucleus. On the 
other hand, φ = 0 corresponds to the liquid medium. Finally, a value 
between 0 and +1 indicates the interface. The smoothing function 
h(φ) and the function g(φ), which models the surface tension effect 
around the interface, are defined, respectively, by (Furtado et al., 
2006)  
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( )23 61510)( φφφφ +−=h   (5) 

( )22 1)( φφφ −=g  (6) 
 
Equations (5) and (6) are widely employed in phase-field 

works. Notice h’(φ) and g’(φ) are zero for both φ = 0 (liquid 
region) and φ = +1 (solid region). This ensures that only at the 
interface will the second and third terms in Eq. (2) be nonzero. 
Moreover, a commonly resorted way of including anisotropy in 
the model is to regard ε in Eq. (2) as dependent on a so-called 
“growth angle,” θ. The growth angle reflects the orientation of the 
normal to the interface with respect to the x axis, i.e., the 
longitudinal interface advance direction (Furtado, 2005):  
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where δε gauges the anisotropy. The value j controls the number of 
preferential growth directions. For example, with j = 0 we shall be 
looking at a perfectly isotropic case, while j = 4 is indicative of a 
dendrite with four preferential growth directions. Orientation of the 
maximum-anisotropy interface is identified by the θo constant of Eq. 
(7). Furthermore, εo

  in that equation, and w in Eq. (2) are model 
parameters associated with interface energy (σ) and thickness (λ), 
respectively, according to the following expressions (Furtado, 
2005):  
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Also from Furtado (2005), the phase-equation mobility, M, is 

computed as  
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where each of the ξ j is obtained from  
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In Eqs. (10) and (11), L and S stand for liquid and solid, 
respectively.  

To simulate growth of an asymmetrical dendrite, it is necessary 
to introduce a noise term in the right-hand side of the phase-field 
equation. A usual expression for this noise, as indicated by Furtado 
(2005), is  

 

( )22 116 φφ −= arnoise  (12) 
 

where r is a random number between −1 and +1. The a parameter is 
the noise amplitude. Maximum noise corresponds to φ = 0.5, at the 
center of the interface, whereas at φ = 0 (liquid region) and φ = +1 
(solid region) there occurs no noise. That is to say, noise is 
generated at the interface. 

Results and Discussion  

First off, we introduce phase-field results for the carbon and 
phosphorus concentrations in the solid region. These estimates shall 
later be compared with Scheil’s equation, here reproduced for 
convenience, as shown by Chalmers (1964):  

 

( ) 1
0 1.. −−= ek
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where cs and co are solid concentration and initial concentration in 
the liquid, respectively, and FS is the solid fraction. In the present 
work, we assume the equilibrium partition coefficients (ke) in the 
ternary alloy system are the same as those of binary alloys. 

Table 1 presents the physical properties of the alloy used in the 
computations that follow. Table 2 presents the parameters used in 
the Phase-Field Method. 

 

 

Table 1. Physical properties of alloy (Ode et al., 2000). 

Property C P Fe 
Partition coefficient 0.204 0.102  
Slope of liquids line, me (K/mol) 1802 1836  
Diffusivity of solute in the liquid phase, DL (m2/s)  2.0 × 10−8 1.7 × 10−9  
Diffusivity of solute in the solid phase, DS (m2/s) 6.0 × 10−9 5.5 × 10−11  
Interface energy, σ (J/m2)   0.204 
Melting temperature, Tm (K)   1810 
Molar volume, Vm (m3/mol)   7.7 × 10−6 

 
 

Table 2. Computational parameters. 

Anisotropy, δε 0.05 
Interface thickness, εo (J/m)1/2 1.462 × 10 − 4 
Surface tension, w (J/m3) 1.346 × 10 6 
Interface mobility, M (m3/sJ) 0.393 
Grid spacing, ∆x = ∆y (m) 3 × 10 − 8 
Time-step length, ∆t (s) 1 × 10 − 9 
Noise amplitude, a 0.025 
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The boundary condition adopted for the Phase-Field Method (φ) 

in this work is a zero-flux condition. Adiabatic boundary conditions 
were used for integrating the energy equation. 

Estimate of Solute Concentration in the Solid  

In preparing this article, the authors placed appreciable attention 
on the choice of a suitable computational grid. Even if not too sharp, 
an interface may still be fine enough to capture correctly the 
phenomena that occur there. Thus, a major effort has been made to 
obtain a sufficiently large number of nodal points around the 
interface so that phase-field gradients can be captured, for it is these 
gradients that define the temperature and concentration fields. In 
order to do that, a square mesh (dimensions: ∆x = ∆y = 3 × 10−8 m) 
has been used. With such dimensions, the phase-field solution 
converges with six nodal points inside the interface, which is 
sufficient for capturing phase-field gradients. More refined grids 
would require a larger computation domain, entailing greater 
computational effort. On the other hand, less refined grids would 
result in a diverging phase-field solution.  

Results for solute concentration in the solid region during the 
solidification are presented in this section. Figure 1 shows the 
evolution of the solid fraction (FS) with time for an initial 
temperature of 1770 K. This solid fraction is given by the ration of 
the solid control volume to the total control volume of the domain, 
as shown in the following expression:  

 
( )LSS VVF 100=   (14) 

 
 
 

 
Figure 1.  Solid fraction ( FS) versus time. 

 
 
A thin solid layer was added at the left boundary of the 

rectangular domain. In the next figure, the solid line represents fit, 
which is dependent upon a function of the square root of the time, 
whereas the points represent the values computed with the phase-
field model.  

In Fig. 1, the solid fraction (FS) is seen to increase faster at the 
onset of solidification. This rate then gradually diminishes towards 
completion of the solidification process.  This slowing down is due 
to a reduction of interface mobility as the temperature increases. 
Given that we are considering adiabatic boundary conditions, owing 
to liberation of latent heat during the change of phase, an increase of 
the temperature occurs as a consequence of the reduction of the 
interface mobility. Traditionally, one assumes that the solid fraction 
(FS) is proportional to the square root of time, as any diffusion- 
controlled growth process (Chalmers, 1964). In the present 
calculation, interface motion is determined from the thermodynamic 
driving force, represented by the third term in Eq. (2). Results in 

Fig. 1 display good agreement between the calculated fraction and 
the square root of the time at the beginning of the solidification. But, 
as expected, the behavior is clearly nonlinear, with both curves 
tending upwards as the solid fraction (FS) increases.  

Figure 2 exhibits a comparison of the carbon concentration as 
evaluated by the model for the solid region and Scheil’s equation, 
cited in Chalmers (1964). We can see that phase-field-based results 
lie above those obtained with Scheil’s equation. For the latter, a 
complete mixing is assumed of carbon in the liquid and without 
diffusion in the solid. For the Phase-Field Method, carbon 
diffusivity in both the liquid and the solid are admitted. When 
carbon diffusivity in the solid is considered, one observes an 
enrichment of the solid region in the course of the solidification. At 
the end of the process, the phase-field estimate of the carbon 
concentration falls below Scheil’s curve. If the same diffusivity for 
the liquid phase was to be adopted by both the phase-field model 
and Scheil’s equation, the two curves would be in good agreement. 
However, Scheil’s equation takes into account a complete mixing of 
solute in the liquid. Thus, the liquid being homogeneous, the amount 
of material solidified, and hence of solute retained in the solid, will 
be smaller. The Phase-Field Method, on the other hand, assumes, for 
the solute in the liquid, a diffusivity on the order of 10−9 m2/s. 
Therefore, just ahead of the moving interface, an accumulation of 
solute takes place, yielding a greater solute concentration in the 
liquid next to the interface as compared to the results from Scheil’s 
model. Also, the presence of the cs = ke.cl law in the phase-field 
formulation will give a greater solute concentration in the solid than 
predicted by Scheil’s equation. Since both laws for cs admit a mass 
balance, in the final steps of the solidification process, Scheil’s 
model will indicate a greater concentration of solute remaining to be 
solidified, as shown in Fig. 2.  

 
 

 
Figure 2. Comparison of carbon concentration, as ev aluated via the Phase-
Field Method, with Scheil’s equation, mentioned in Chalmers (1964).  

 
 
Figure 3 displays phosphorus concentration in the solid region. 

Again, as calculated with the phase-field model, the phosphorus 
concentration differs from the values obtained with Scheil’s 
equation. The reason for this is analogous to the one previously 
mentioned for carbon. This seems consistent with the fact that, 
during solidification, by diffusivity around the already solidified 
nucleus, solute migrates towards the center, whereas, due to a 
decrease in solubility, excess solute is diverted forward, into the 
melt. Again, a nonlinear behavior is observed. However, by 
comparing Figs. 2 and 3, one notes a tendency for the phase-field 
solution to yield, for the phosphorus, a nearly constant value after 
around 0.2%. This follows from the fact that diffusivity of 
phosphorus solute in the solid phase is roughly two orders of 
magnitude less than that of carbon.  
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Figure 3. Comparison of phosphorus concentration, a s evaluated via the 
Phase-Field Method, with Scheil’s equation (Chalmer s, 1964). 

 
 
 
The next section features results of a study on the carbon and 

phosphorus diffuse layer in the liquid region.  

Simulation of the Diffuse Layer of Solute in the Liquid Phase  

In this simulation, the initial domain temperature is 1770 K. A 
“seed” (solid nucleus) is previously added at the bottom of the 
domain (Y = 0, X = 2.25 × 10−6 m). Preferential growth angle of the 
dendrite tip is 90º to the x axis. Anisotropy mode is J = 4. Initial 
molar concentration of carbon and phosphorus are, respectively, 
0.5% and 0.001%. A dendrite tip is shown in Fig. 4.  

 
 

 
Figure 4. Start of dendrite growth, t = 4××××10 −−−− 7 s. 

 
 
 
The dark region represents the solid and white stands for 

remaining liquid. The interface is the gray area between the solid 
and liquid regions. Dendrite tip dimensions (in this case): base 
width, 0.5 × 10−6 m; height, approximately 0.35 × 10−6 m. The 
curves of carbon and phosphorus content extracted from the dendrite 
tip are shown in the next figure (Fig. 5).  

 

 
Figure 5. Carbon and phosphorus concentrations by r egion: solid ( φφφφ = +1), 
liquid ( φφφφ = 0), and interface (0 < φφφφ < +1). 

 
 
 
Plots in Fig. 5 correspond to 4 × 10−7 s of solidification time. 

The left-hand vertical axis gives the carbon concentration; the right-
hand one, that of phosphorus. When φ = +1, we are in the solid 
region, whereas φ = 0 is the liquid. The interface lies between φ = 
+1 and 0. Therefore, one can see that the solid region is poor in both 
carbon and phosphorus. This is because, during solidification, the 
solutes are rejected into the liquid phase, which then becomes rich 
in solute just ahead of the interface. As we move farther to the right, 
hence away from the interface, concentration decreases 
exponentially for both solutes, towards their initial values in the 
liquid. Such tendency seems to be in agreement with the 
consideration that the Gibbs free energy is more negative in the 
solid phase. Still with respect to Fig. 5, one can observe the carbon 
diffuse layer to be larger than that of phosphorus, due to the greater 
diffusivity of carbon as compared to that of phosphorus. As for the 
seeming coincidence in the peak percentage concentrations, it 
merely stems from the fact that the carbon axis, to the left, features a 
scale two orders of magnitude greater than that for the phosphorus, 
to the right.  

Figure 6 presents the carbon profile in the course of the 
solidification process, at t1 = 1.0 × 10−6 s, t2 = 2.25 × 10−6 s, and t3 = 
5.0 × 10−6 s from the inception of solidification. In this picture, one 
can see the concentration peak advance along the abscissas axis for 
t1, t2, and t3 and, as a result, an increase in the carbon concentration 
peak. On all three curves, right prior to the peak, enrichment in 
solute can be observed in the solidified region. As mentioned 
before, this follows because, in the Phase-Field Method, solute 
diffusivity in the solid is admitted. After the peak, the carbon 
concentration decays exponentially to its value in the liquid phase, 
i.e., co = 0.5%. The diffuse layer undergoes no significant alteration 
in thickness, whereas the carbon concentration peak increases with 
times t1, t2, and t3. It happens because solubility in the solid is less 
than in the liquid. The combined effect of the moving solid-liquid 
interface and carbon rejection from the solid results in an increase in 
the carbon peak concentration.  
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Figure 6. Carbon concentration profile at times t 1 , t 2, and t 3. 

 
 

Microstructure Simulation of the Fe-C-P Alloy  

Figure 7 displays results obtained with a microstructure 
simulation of a Fe-C-P dendrite with 0.5% C and 0.001% P. 
Boundary and initial conditions are the same as in Sec. 3.2, except 
that the initial temperature is now 1750 K.  

 
 

 
Figure 7. Dendrite simulated for a super-cooled dom ain. 

 
 
 
The dendrite exhibited in Fig. 7 was calculated from a seed 

previously added to the domain at Y = 0 and X = 0.75 × 10−5 m. 
Three different preferential growth directions can be discerned, the 
growth time being 2.75 × 10−5 s. Dendrite growth speed depends 
upon the initial super-cooling (∆T = Tinitial – Tfusion), as discussed by 
Furtado et al. (2006). In general, a sizable unbalance of Gibbs free 
energy occurs at the interface when there is intense supercooling. It 
is ultimately this unbalance that dictates the solidification speed. 
The dendrite shown above features some experimental 
characteristics described in the literature (Chalmers, 1964), which 
are secondary arms, outgrowths roughly perpendicular to the 
primary arms.  

Figure 8 displays the carbon and phosphorus concentration 
distributions that correspond to the dendrite in Fig. 7. It can be seen 
that phosphorus concentration is much less than that of carbon. The 
carbon diffuse layer is more extensive than the phosphorus one. As 
before, this is explained by the carbon solute diffusivity being 
higher than the corresponding value for phosphorus. During 
solidification, there occurs, first in the liquid region, a variation of 

the carbon concentration. Only thereafter does the phosphorus 
concentration vary. A carbon and phosphorus entrapment can be 
observed in the region next to the secondary arms. Therefore, these 
regions are the richest in both solutes. As a result, the solidification 
temperature is lower for those regions. With a greater solute 
(especially carbon) concentration and lower solidification 
temperatures, these will tend to be the last parts of the dendrite to 
solidify. 
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(b) phosphorus 

Figure 8. (a) Carbon and (b) phosphorus concentrati on fields.  

 
 
 
Next, the four images in Fig. 9 correspond to simulations carried 

out, separately, for the following two alloys: 0.5% C – 0.01% P; and 
0.5% C – 0.02% P. The focus of these simulations was on the 
dendrite geometry as a function of the phosphorus content. 
However, as it can be seen by doubling the phosphorus content in 
the alloy, the geometry remained practically unaltered. The dendrite 
arm thickness suffered no significant change.  

The next section describes a study of the forward speed of the 
dendrite tip, during solidification, for different phosphorus contents. 
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(a) 0.5% carbon 

 

 
(b) 0.01% phosphorus 

 

 
(c) 0.5% carbon 

 

 
(d) 0.02% phosphorus 

Figure 9. Carbon and phosphorus solute concentratio n fields. (a) and (b) 
0.5% C – 0.01% P alloy; (c) and (d) 0.5% C – 0.02% P alloy. 

Influence of Phosphorus Content on the Solidification 
Speed 

For this simulation, boundary and initial conditions are the same 
as in the previous section, except that phosphorus content has been 
altered for evaluating the speed at each point for each set of initial 
and boundary conditions. Figure 10 shows the results. The speed 
can be seen to decrease monotonically as the phosphorus 
concentration increases. This occurs because phosphorus tends to 
reduce interface mobility, acting as a barrier against its motion. The 
apparent tendency toward a linear behavior in the speed plot is a 
mere consequence of the short time interval considered here. 

 
 

 
Figure 10. Speed of dendrite tip versus phosphorus concentration. 

 

Conclusions  

Results for solid fraction (FS) against time at solidification onset 
are in agreement with the kinetic theory of solidification. That is, the 
solid fraction is roughly proportional to the square root of time. 
Curve separation is due to a loss of interface mobility as the domain 
temperature increases owing to liberation of latent heat.  

Solute (both carbon and phosphorus) concentrations as 
calculated by the Phase-Field Method differ slightly from values 
obtained with Scheil’s equation. This occurs because our model 
takes into account solute diffusivity in the solid and liquid phases. 
As a result, the solid portion continues to be enriched with solute 
throughout the solidification process. Phase-field calculations for 
solute diffusivities yield a thicker diffuse layer for carbon, since this 
element has a greater diffusivity than phosphorus.  

Two-dimensional simulations produced dendrites, which are 
similar to the ones found in experiments reported in the literature, 
complete with primary and secondary arms. During solidification, 
carbon and phosphorus are entrapped between the secondary arms. 
This effect lowers the solidification temperature in those regions, 
which, in turn, require a longer time to solidify.  

Lastly, addition of phosphorus has been shown to not affect 
appreciably the resulting dendrite geometry. It does, nevertheless, 
reduce mobility of the solid-liquid interface. We were prompted to 
studying phosphorus owing to its being regarded as a harmful 
element, which imparts a low-temperature fragility on the steel, 
especially on high-carbon steels. For this reason, maximum 
admissible phosphorus contents are specified. Low-temperature 
fragility follows from a hardening of the ferrite, caused by 
phosphorus dissolution in it. Solid dissolution-caused hardening 
makes for low resistance against shocks or low tenacity. High 
phosphorus contents may lead to occurrence of an eutectic, which 
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melts slightly above 1000ºC. This, in turn, may cause steel rupture 
when hot-deformed. 

On the basis of what has just been discussed, some prospects for 
future work include:  

1) In spite of the ability of phase-field models to dendritic 
microstructure evolution during solidification, the method is 
plagued by low computational efficiency. For instance: with too 
refined grids, simulation of the evolution of a single dendrite would 
require a very large computation domain, with a million nodes. An 
option to circumvent this problem would be the implementation of 
adaptive grids, with a finer mesh around the interface.  

2) This article features the evolution of a single dendrite, 
growing along some preferential directions. In future works, one 
could formulate simultaneous evolution of several dendrites 
growing in random directions. That way, it is possible to study the 
phenomenon of competitive growth of dendrites, which grew and 
developed along different directions. Then, there will be some 
dendrites more developed than others, as the latter shall have their 
growth inhibited.  
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