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Microsegregation in Fe-C-P Ternary
Alloys Using a Phase-Field Model

A phase-field model is proposed for the simulatioih microstructure and solute
concentration during the solidification process B&-C-P ternary alloys. A relation
between material properties and model parameterspiissented. Two-dimensional
computation results exhibit dendrites in Fe-C-Pogd for different phosphorus
concentrations. Alterations in the phosphorus caotregion appear to affect the advance
speed of the solid-liquid interface. Such an altiera is due to the small diffusivity of
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Introduction

For a number of years now, appreciable attentigrblean paid,
in open literature, to the simulation of dendritewgth and related
phenomena. Several different numerical approactess wroposed
to that end. Some works have focused on pure raltervhereas
others took heed of binary alloys of metallurgicalerest. One
example is the work by Warren and Boettinger (199&hich
applies the Phase-Field Method to such problemsthfar approach
employing adaptive finite elements can be foundNarski and
Picasso (2007). At the same time, results have mdiished
pertaining to phase-field modeling and simulatidhanisotropy
effects (Suwa et al.,, 2007) and solidification msses (Mullis,
2006). On the other hand, some work has been pegfbron
segregation in ternary alloys (Wynblatt and Lanti@99). It is in
this general framework that the present work isetiped, with a
focus on ternary alloys and Phase-Field Method émginted via
finite volumes.

Solidification is the main phenomenon taking pladering
casting. This, in turn, has long been known as latively
inexpensive means for producing metal goods. Noysdasizable
portion of the concepts and methods developed theryears in
support of the research into solidification phenoeecan be
successfully and economically translated to indaistrscale.
Noticeable improvement can thereby be achievedyfansas the
quality of the pieces manufactured by solidificatiis concerned.
For this reason, solidification studies are not jmsindatory; they
truly are a powerful industrial tool. For convemt# technologies,
through understanding and control of the solidifma process
opens wide perspectives in terms of its economtergil, since it
provides the shortest distance from metal inpdinia product. As a
consequence, solidification is one of the most irgu specialties
in Metallurgy and Materials Science.

In-the-mold solidification of a metal, oppositewdat might at
first be surmised, is not a “passive” process iy way. On the
contrary, the metal undergoes a liquid-to-solichs$farmation of
very dynamic nature. In its course, events takecepla— like
nucleation and growth of dendritic structures — ahhiin the
absence of a tight control, may compromise thd fangout or even
halt the manufacturing process altogether. Suchtswean originate
several types of material heterogeneities whiclstdrally affect the
metallurgical quality of the final product. Theredo solidification
and the main structures arising from it — the déadr— are
extremely important from a practical standpointthat they exert a
strong influence on the properties of the products.
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Often, in situations that reflect more closely ttenditions in
applications, it is not feasible to obtain solutiounsing classical
mathematical models of solidification. Usually, Btiaal solutions
are possible only in very limited and idealizeduattons such as
one-dimensional solidification, constant diffusiocoefficients,
liquid at saturation temperatures, same densityhaad capacities of
solid and liquid phases. On the other hand, everendetailed
numerical models using classical equations can aresolve
complicated two- and three-dimensional dendriteicstires. Also,
methods based on classical transport equationsfoamed to be
limited, when dealing with meta-stable states. Psobstances
provide one such example, when the solidificatioont advances
through a super-cooled liquid phase. Another casthat of alloy
solidification, for instabilities of the advancinfgjont can occur
owing to constitutional super-cooling. In thesetamges, the solid-
liquid interface may develop a complex geometrgalty dependent
on curvature, solidification speed, and possiblisaropy. For this
reason, over the past twenty years, consideralitet dfas been
applied to the ad hoc development of specializegsighl and
numerical methods.

In particular, the Phase-Field Method has garnewade
acceptance, given its ability to simulate the sfididtion process in
the presence of a complicated solid-liquid intezfathe seminal
work on the method is due to G. Caginalp and cokersr (Caginalp
and Fife, 1986), dating back to the early 1980’scdlection of
models has stemmed from that paper, ever sincérsitthe focus
was on pure materials (Kobayashi, 1993; Kim et1#899; Furtado
et al., 2006) and then, on binary alloys (Lee anduRi, 1999; Ode
and Suzuki, 2002). Usually, in phase-field workslusons to the
equations are obtained by divided differences. &fmys, dendrite
growth is considered at constant temperature osteah cooling
rate. In our work, all equations were solved nuoaly with
recourse to the Finite-Volume Method (Patankar,0198he reason
for such a choice lies in the fact that this ispaservative method.
The transient term of the phase field equatiorigsrdtized using an
explicit scheme since it does not need to be sailvdabth the solid
and liquid regions. It suffices to solve the eqomtiaround the
interface. For the transient term in the energyseovation equation,
an implicit scheme is used, owing to its uncondiéionumerical
stability regardless of the size of the time stepdu In all of our
simulations, a single, stable, solid nucleus issatered to have
been previously added to the liquid domain. Morepfa applying
the Phase-Field Method to the solidification of G& ternary
alloys, we prescribe as initial conditions the tengpure and solute
concentration, taking into account surface tensamd crystal
anisotropy effects.

The study of the effect of phosphorus on steel selscted
because even in small quantities it influencesl siaality greatly.
Phosphorus is generally regarded as a harmful coemp given
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that it tends to render steels fragile, especiai-carbon steels or term on this side is a source, whegs the specific heat at constant

when their content goes beyond certain acceptabits [(Chalmers,
1964). For this reason, the maximum admissible jphogis content
is specified.

Nomenclature

= noise amplitude, dimensionless

= specific heat, J/ AK

= thermal diffusivity, rfis

= solid fraction, dimensionless

=models interface surface tension, dimensionless
smoothing function, dimensionless

controls the number of preferential growth direatso
number of preferential growth directions, dirs@mless
time, s

= equilibrium partition coefficient, dimensionless

= universal gas constant, J/mol.K

=time, s

= temperature, K

= molar volume, fimol

= excess free energy, 3/m

Greek Symbols

O, = gauges the anisotropy, dimensionless
AH = latent-heat variation, J/th

£ interface thickness, (J/1

@ order parameter, dimensionless

A = interface thickness, m
g

o

moo >

[7)

sc--nE-c—sa

= growth angle, deg.
= interface energy, J/fn

Subscripts

C relative to concentration of carbon

CL relative to concentration of carbon in the liquégjion

CS relative to concentration of carbon in the soéigion

m  relative to molar concentration

p relative to pressure

P relative to concentration of phosphorus

PL relative to concentration of phosphorus in theitiqegion
PS relative to concentration of phosphorus in thédsagion

Super scripts
e equilibrium

M athematical M odel

We solve simultaneously the equations of energases, and
carbon and phosphorus concentrations. Use of thesePRield
Method presupposes occurrence of growth of one arensolid
nucleus in the bulk of the liquid phase. Here, attipular, one of
such nucleus is assumed to grow. As a consequtmnee, different
regions that exist must be considered, namely ofid and liquid
regions as well as their interface.

The energy equation to be integrated is (Furtagd. e2006)

9T _ppet s
at

AH ()09
h(¢)at

1)

P

The term on the left-hand side represents the tiam@tion of
the specific thermal energy divided by the conspaassure specific
heat. The first term on the right-hand side is dheergence of the
heat transfer by heat diffusion (conduction) didd®y the product
of specific mass and constant pressure heat cgpatiereD is the

pressureAH measures the latent-heat variation around theface
andh’(g) is the derivative of the so-called “smoothingh€tion, to
be defined later. The derivativa/ 0t is the time-and-space rate of
variation of the phase-field variable,

As for the phase equation, Ode et al. (2000) prepos

(1/m)(0g/ot) = 0% - wg (9
[1 (Ccs + CPS)] [1 (CoL + CPL)]
[l (CCL + CPL)] [1 (Ces+ CPS)]

The evolution of the solid nucleus with tiniag/ ot) is assumed
to be proportional to the variation of the freesgyefunctional with
respect to the order parameter,The terms of the phase equation
are derived from this free-energy functional, whiolist decrease
during any solidification process, as indicatedtlire article by
Furtado et al. (2006). In Eq. (2M quantifies the phase-field
mobility. The product £0%¢ is a diffusivity term. The next
component of the equatiowg’(¢g), factors in the excess free energy
arising from surface tension around the interfadee last product
on the right-hand side translates the driving folhind the
solidification process. Her® is the gas constant aiv},, the molar
volume. The arguments to the natural logarithefis, andc®s, are,
respectively, the equilibrium concentrations of boar and
phosphorus in the solid region. Likewis&, andc%. represent their
corresponding equilibrium concentrations in theliigphase. Their
respective ordinary concentrations in the liquid aolid regions are
denoted, by the paig. andcs, andces andces The noise term in
the right-hand side of the phase-field equation W explained
later.

As proposed by Ode et al. (2000), solute conceatrsitin both
regions are calculated with the solute transparaqgns, numbered
(3) and (4), below.

+ n0|se

+h(@

1o 3)
Cos [1-(%5 +cps)] o
+h(® o } -Obn - (CCL +cP|_) }
ﬁuﬂow%hw%ﬁ(z”d “
1 (cce + o) o
+h(® oo } OLn - (CCL +cP|_) }

In these equation€)c and Dy are the carbon and phosphorus
diffusivities in the solid and liquid regions. Timodel used here
takes into account solute diffusivity in the liquahd interface
regions.

The system we focus on is the solid nucleus ples liduid
around it, plus the interface. For the Phase-FMethod, this
system is continuously represented by the singlasefiield
variable,@ A valueg= +1 is associated with a solid nucleus. On the
other handg@= 0 corresponds to the liquid medium. Finally adue
between 0 and +1 indicates the interface. The dmrugptfunction
h(@ and the functiog(¢, which models the surface tension effect
around the interface, are defined, respectively(Fytado et al.,
2006)

thermal diffusivity andT represents the temperature. The second
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h(@) = ¢* (10- 150+ 692)
9@ =9*(1-¢f

®)
(6)

Equations (5) and (6) are widely employed in phiaele-
works. Noticeh’'(¢) and g’(¢) are zero for bothyp = 0 (liquid
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region) andg = +1 (solid region). This ensures that only at the

interface will the second and third terms in Eq) k2 nonzero.
Moreover, a commonly resorted way of including afrigpy in

the model is to regard in Eq. (2) as dependent on a so-called
“growth angle,”@ The growth angle reflects the orientation of the

normal to the interface with respect to thkeaxis, i.e., the
longitudinal interface advance direction (Furtad@05):
£(6) =¢&o{1+ 6, cos]j(6- 6]} )
where ., gauges the anisotropy. The vajueontrols the number of
preferential growth directions. For example, with 0 we shall be
looking at a perfectly isotropic case, whjle= 4 is indicative of a
dendrite with four preferential growth directior@rientation of the
maximum-anisotropy interface is identified by teconstant of Eq.
(7). Furthermoreg, in that equation, and/ in Eq. (2) are model
parameters associated with interface enemyafid thicknessA),

respectively, according to the following expressio(Furtado,
2005):

09

dx £
2= J'— dg, = 224250 ®)
o dg, 0 \/W
+A 2
d
a=e§J' P gy = LodW )
4L ox 32

Also from Furtado (2005), the phase-equation moyhil, is
computed as

3
& 1

a2w {D_n

where each of thé; is obtained from

= 4(1(CvaCfs) + %‘(Z(Csbcgs

1
M 2i

)} (10)

dg,

X -
Do (1_ %)

In Egs. (10) and (11)L and S stand for liquid and solid,

respectively.

To simulate growth of an asymmetrical dendrites ihecessary
to introduce a noise term in the right-hand sidehef phase-field
equation. A usual expression for this noise, agcatdd by Furtado
(2005), is

noise=16arg?(1- ¢)? (12)
wherer is a random number between -1 and +1. dparameter is
the noise amplitude. Maximum noise correspondg+00.5, at the
center of the interface, whereasgat 0 (liquid region) andp= +1

(solid region) there occurs no noise. That is tg, saoise is
generated at the interface.

Results and Discussion

First off, we introduce phase-field results for tb@&rbon and
phosphorus concentrations in the solid region. &lestimates shall
later be compared with Scheil's equation, here aépced for
convenience, as shown by Chalmers (1964):

Co = Coke.(1- F )k (13)
wherecg andc, are solid concentration and initial concentration
the liquid, respectively, anBs is the solid fraction. In the present
work, we assume the equilibrium partition coeffitie k) in the
ternary alloy system are the same as those ofybaikmys.

Table 1 presents the physical properties of theyalsed in the
computations that follow. Table 2 presents the mpatars used in
the Phase-Field Method.

Table 1. Physical properties of alloy (Ode etal.,  2000).
Property C P Fe
Partition coefficient 0.204 0.102 O
Slope of liquids linem. (K/mol) 1802 1836 O
Diffusivity of solute in the liquid phas®, (m?s) | 2.0x 10® | 1.7x10° ]
Diffusivity of solute in the solid phasBs (m¥s) | 6.0x 10° | 5.5x 10 ]
Interface energyg (J/nf) 0 0 0.204
Melting temperaturel,, (K) O O 1810
Molar volume Vi, (m¥mol) O O 7.7x10°
Table 2. Computational parameters.

Anisotropy, o: 0.05

Interface thicknessg, (J/m)? | 1.462x 10™*

Surface tensionw (J/nT) 1.346x 10°

Interface mobilityM (m®/sJ) 0.393

Grid spacing/Ax = Ay (m) 3x 1078

Time-step lengthit (s) 1x10°°

Noise amplitudea 0.025
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The boundary condition adopted for the Phase-Ritdthod @
in this work is a zero-flux condition. Adiabatic loodary conditions
were used for integrating the energy equation.

Estimate of Solute Concentration in the Solid

In preparing this article, the authors placed agiptde attention
on the choice of a suitable computational grid.rEfeot too sharp,
an interface may still be fine enough to captureremtly the
phenomena that occur there. Thus, a major effathie®n made to
obtain a sufficiently large number of nodal poirgsound the
interface so that phase-field gradients can beucegt for it is these
gradients that define the temperature and condentrdields. In
order to do that, a square mesh (dimensia®ss Ay = 3x 108 m)
has been used. With such dimensions, the phase-ielution
converges with six nodal points inside the intezfaavhich is
sufficient for capturing phase-field gradients. Marefined grids
would require a larger computation domain, entgiligreater
computational effort. On the other hand, less e#figrids would
result in a diverging phase-field solution.

Results for solute concentration in the solid ragéuring the
solidification are presented in this section. Fegur shows the
evolution of the solid fraction Fg) with time for an initial
temperature of 1770 K. This solid fraction is giv@nthe ration of
the solid control volume to the total control voleirof the domain,
as shown in the following expression:

Fs =100(vs/V, ) (14)

*Phase-Field

—Ssqrt(t)

Solid Fraction (Fs)

O T
0.0001

0.0002 0.0003 0.0004 0.0005

Square root of time (sec 1'2)

Figure 1. Solid fraction ( Fs) versus time.

A thin solid layer was added at the left boundafy tkoe
rectangular domain. In the next figure, the solig Irepresents fit,
which is dependent upon a function of the squaog of the time,
whereas the points represent the values computddthe phase-
field model.

In Fig. 1, the solid fractionHy) is seen to increase faster at th
onset of solidification. This rate then gradualiynohishes towards
completion of the solidification process. Thiswgiiog down is due
to a reduction of interface mobility as the tempem increases.
Given that we are considering adiabatic boundanditmns, owing
to liberation of latent heat during the changeludige, an increase of
the temperature occurs as a consequence of theti@uwf the
interface mobility. Traditionally, one assumes ttiet solid fraction
(F9 is proportional to the square root of time, ay diffusion-
controlled growth process (Chalmers, 1964). In theesent
calculation, interface motion is determined frora thermodynamic
driving force, represented by the third term in E2). Results in
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Fig. 1 display good agreement between the calalfitetion and
the square root of the time at the beginning ofsthlaification. But,
as expected, the behavior is clearly nonlinearhvlibth curves
tending upwards as the solid fractidr)(increases.

Figure 2 exhibits a comparison of the carbon cotraéon as
evaluated by the model for the solid region ande8shequation,
cited in Chalmers (1964). We can see that phasdfii@sed results
lie above those obtained with Scheil's equationt #e latter, a
complete mixing is assumed of carbon in the ligaid without
diffusion in the solid. For the Phase-Field Methodarbon
diffusivity in both the liquid and the solid are raited. When
carbon diffusivity in the solid is considered, owbserves an
enrichment of the solid region in the course ofgbgdification. At
the end of the process, the phase-field estimatehef carbon
concentration falls below Scheil's curve. If themsadiffusivity for
the liquid phase was to be adopted by both the epfialsl model
and Scheil's equation, the two curves would beandyagreement.
However, Scheil’'s equation takes into account agieta mixing of
solute in the liquid. Thus, the liquid being homogeus, the amount
of material solidified, and hence of solute retdime the solid, will
be smaller. The Phase-Field Method, on the othed h&ssumes, for
the solute in the liquid, a diffusivity on the ordef 10° més.
Therefore, just ahead of the moving interface, ecumulation of
solute takes place, yielding a greater solute amnagon in the
liquid next to the interface as compared to theltsfrom Scheil's
model. Also, the presence of tleg= k..c; law in the phase-field
formulation will give a greater solute concentratia the solid than
predicted by Scheil's equation. Since both lawscfaadmit a mass
balance, in the final steps of the solidificatiorogess, Scheil’s
model will indicate a greater concentration of $eltemaining to be
solidified, as shown in Fig. 2.

0.01 4
0.008 1

0.006 A

Phase-Field — Scheil

0.004 1

0.002 4

Carbon Concentration

0z

04 06
Solid Fraction (Fg)

00

Figure 2. Comparison of carbon concentration, as ev  aluated via the Phase-
Field Method, with Scheil's equation, mentioned in Chalmers (1964).

Figure 3 displays phosphorus concentration in tiiel segion.
Again, as calculated with the phase-field modek phosphorus
concentration differs from the values obtained wiBicheil's
e A o .
equation. The reason for this is analogous to the jreviously
mentioned for carbon. This seems consistent with fdct that,
during solidification, by diffusivity around the rabdy solidified
nucleus, solute migrates towards the center, whkerdae to a
decrease in solubility, excess solute is divertaavérd, into the
melt. Again, a nonlinear behavior is observed. Hewve by
comparing Figs. 2 and 3, one notes a tendencyh®mphase-field
solution to yield, for the phosphorus, a nearlystant value after
around 0.2%. This follows from the fact that diffuy of
phosphorus solute in the solid phase is roughly twders of
magnitude less than that of carbon.
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2.0x107 2

162107

* Phase-Field

— Scheil

1 2s107 %
8021076 4

4 pxt0r &

Phosphorus Concentrati

0

0.4 0.6 08 1
Solid Fraction (Fs)

s evaluated via the
s, 1964).

Figure 3. Comparison of phosphorus concentration, a
Phase-Field Method, with Scheil’s equation (Chalmer

The next section features results of a study onctiteon and
phosphorus diffuse layer in the liquid region.

Simulation of the Diffuse Layer of Solutein the Liquid Phase

In this simulation, the initial domain temperatusel770 K. A
“seed” (solid nucleus) is previously added at thatdm of the
domain ¥ = 0,X = 2.25x 10° m). Preferential growth angle of the
dendrite tip is 90° to thg axis. Anisotropy mode i§ = 4. Initial
molar concentration of carbon and phosphorus asperctively,
0.5% and 0.001%. A dendrite tip is shown in Fig. 4.

Data extraction
position

&«
Interface
ace s,

5 5

2250107 ° 2.5%10°

X (m)

o 2x10°

Figure 4. Start of dendrite growth, t=4x10""s.

The dark region represents the solid and white dstafor
remaining liquid. The interface is the gray areawleen the solid
and liquid regions. Dendrite tip dimensions (instldase): base
width, 0.5 x 10° m; height, approximately 0.38 10° m. The
curves of carbon and phosphorus content extraobed the dendrite
tip are shown in the next figure (Fig. 5).
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Figure 5. Carbon and phosphorus concentrations by r
liquid ( @=0), and interface (0 < @< +1).

egion: solid ( @= +1),

Plots in Fig. 5 correspond to» 107 s of solidification time.
The left-hand vertical axis gives the carbon coiregion; the right-
hand one, that of phosphorus. Wher= +1, we are in the solid
region, whereag = 0 is the liquid. The interface lies betwegrr
+1 and 0. Therefore, one can see that the solidmég poor in both
carbon and phosphorus. This is because, duringificdition, the
solutes are rejected into the liquid phase, whidntbecomes rich
in solute just ahead of the interface. As we marther to the right,
hence away from the interface, concentration dsesa
exponentially for both solutes, towards their glitvalues in the
liquid. Such tendency seems to be in agreement \ita
consideration that the Gibbs free energy is morgatiée in the
solid phase. Still with respect to Fig. 5, one clserve the carbon
diffuse layer to be larger than that of phosphodug to the greater
diffusivity of carbon as compared to that of phaspis. As for the
seeming coincidence in the peak percentage comtiems, it
merely stems from the fact that the carbon axishédeft, features a
scale two orders of magnitude greater than thathferphosphorus,
to the right.

Figure 6 presents the carbon profile in the coun$ethe
solidification process, af = 1.0x 10°s,t, = 2.25% 10° s, and; =
5.0x 10° s from the inception of solidification. In thisgpire, one
can see the concentration peak advance along guisals axis for
t1, to, andt; and, as a result, an increase in the carbon ctnatiem
peak. On all three curves, right prior to the peaftichment in
solute can be observed in the solidified region. rAsntioned
before, this follows because, in the Phase-Fieldhbl® solute
diffusivity in the solid is admitted. After the peathe carbon
concentration decays exponentially to its valughia liquid phase,
i.e.,c, = 0.5%. The diffuse layer undergoes no significtdration
in thickness, whereas the carbon concentration peakases with
timest,, t,, andts. It happens because solubility in the solid is les
than in the liquid. The combined effect of the nmayisolid-liquid
interface and carbon rejection from the solid rissiml an increase in
the carbon peak concentration.

July-September 2009, Vol. XXXI, No. 3/ 177
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3 the carbon concentration. Only thereafter does ghesphorus

t'|:5x10_?5 “2=11=10 5 ;t3:5x10'65

0.013 2 concentration vary. A carbon and phosphorus enteapman be

observed in the region next to the secondary afimstefore, these
regions are the richest in both solutes. As a tethe solidification
temperature is lower for those regions. With a mmeasolute
(especially carbon) concentration and lower satdifon
temperatures, these will tend to be the last pafrthe dendrite to

solidify.
%C | R
1 Ex10-2 0.354 0535 0715 0.895 1.076
1 L L L 1 .
v 5107 121076 15x107° bl
Horizontal length {m) of the calculation domain E
>
Figure 6. Carbon concentration profile attimest1  ,t2,andt3. .
ox10
. . . 0 -
Microstructure Simulation of the Fe-C-P Alloy 0 590y P 150
Figure 7 displays results obtained with a micrastie (a) carbon
simulation of a Fe-C-P dendrite with 0.5% C and Q%0P.
Boundary and initial conditions are the same aSedn. 3.2, except Al 2 e
that the initial temperature is now 1750 K. ‘.5X10,51.943x10'3 3663x10°% 5.323x10"3 7.014x10" 3 8.704x10"%
eI S
| ptor®
I E
121672 >
£ I 510 ®
b
5x107
[
0 5x10°® b1g® 1.5x10°°
sl =10 151077 (b) phosphorus

% (m)

Figure 7. Dendrite simulated for a super-cooled dom  ain.

Figure 8. (a) Carbon and (b) phosphorus concentrati  on fields.

Next, the four images in Fig. 9 correspond to satiahs carried

previously added to the domain ¥t= 0 andX = 0.75x 10°° m. out, separately, for the following two alloys: 0.%%6- 0.01% P; and
Three different preferential growth directions dem discerned, the 0-5% C — 0.02% P. The focus of these simulations erashe
dendrite geometry as a function of the phosphorostent.

. . 5 .
growth time being 2.7% 10 s. Dendrite growth speed deF)endsHowever, as it can be seen by doubling the phosphcontent in

upon the initial super-cooling\T = Tinitia — Trusion), @S discussed by : A .
Furtado et al. (2006). In general, a sizable umuaaof Gibbs free the allgy, the geometry rem_eun_e_d practically unalle The dendrite
arm thickness suffered no significant change.

energy occurs at the interface when there is ietsapercooling. It The next section describes a study of the forwpekd of the

IS uItlmater.thls unbalance that dictates the dibiiation spegd. ?ndrite tip, during solidification, for differephosphorus contents.
The dendrite shown above features some experimenta

characteristics described in the literature (Chaémn&964), which
are secondary arms, outgrowths roughly perpendictda the
primary arms.

Figure 8 displays the carbon and phosphorus coratent
distributions that correspond to the dendrite ig. Fi. It can be seen
that phosphorus concentration is much less thanofhearbon. The
carbon diffuse layer is more extensive than thesphorus one. As
before, this is explained by the carbon soluteudiffity being
higher than the corresponding value for phosphomasring
solidification, there occurs, first in the liquiégion, a variation of

The dendrite exhibited in Fig. 7 was calculatednfra seed
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Figure 9. Carbon and phosphorus solute concentratio n fields. (a) and (b)

0.5% C — 0.01% P alloy; (c) and (d) 0.5% C — 0.02% P alloy.
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I nfluence of Phosphorus Content on the Solidification
Speed

For this simulation, boundary and initial conditioare the same
as in the previous section, except that phosphocongent has been
altered for evaluating the speed at each poineémh set of initial
and boundary conditions. Figure 10 shows the resiilhe speed
can be seen to decrease monotonically as the pbasph
concentration increases. This occurs because pbosphiends to
reduce interface mobility, acting as a barrier aglits motion. The
apparent tendency toward a linear behavior in fieed plot is a
mere consequence of the short time interval consitieere.

Speed (m/s)

0 T T T T T 1
0 0.1 02 03 04 0.5 06
Phosphorus concentration

Figure 10. Speed of dendrite tip versus phosphorus concentration.

Conclusions

Results for solid fractionHg) against time at solidification onset
are in agreement with the kinetic theory of soladifion. That is, the
solid fraction is roughly proportional to the sqeiaoot of time.
Curve separation is due to a loss of interface ltplais the domain
temperature increases owing to liberation of latesat.

Solute (both carbon and phosphorus) concentratiass
calculated by the Phase-Field Method differ sligHtom values
obtained with Scheil's equation. This occurs beeaasr model
takes into account solute diffusivity in the so#idd liquid phases.
As a result, the solid portion continues to be @red with solute
throughout the solidification process. Phase-fietdculations for
solute diffusivities yield a thicker diffuse layfer carbon, since this
element has a greater diffusivity than phosphorus.

Two-dimensional simulations produced dendrites, cwhare
similar to the ones found in experiments reportedhie literature,
complete with primary and secondary arms. Duriniidgization,
carbon and phosphorus are entrapped between tbhadseg arms.
This effect lowers the solidification temperature those regions,
which, in turn, require a longer time to solidify.

Lastly, addition of phosphorus has been shown tb affect
appreciably the resulting dendrite geometry. It gjagevertheless,
reduce mobility of the solid-liquid interface. Weese prompted to
studying phosphorus owing to its being regardedaakarmful
element, which imparts a low-temperature fragilidy the steel,
especially on high-carbon steels. For this reaspraximum
admissible phosphorus contents are specified. lemaperature
fragility follows from a hardening of the ferritecaused by
phosphorus dissolution in it. Solid dissolution-sad hardening
makes for low resistance against shocks or low dignaHigh
phosphorus contents may lead to occurrence of gettér) which
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melts slightly above 1000°C. This, in turn, may s&steel rupture
when hot-deformed.

On the basis of what has just been discussed, pomseects for
future work include:

1) In spite of the ability of phase-field models dendritic
microstructure evolution during solidification, thenethod is
plagued by low computational efficiency. For instanwith too
refined grids, simulation of the evolution of aglmdendrite would
require a very large computation domain, with dionl nodes. An
option to circumvent this problem would be the iempkntation of
adaptive grids, with a finer mesh around the iatesf

2) This article features the evolution of a singlendrite,
growing along some preferential directions. In fatworks, one
could formulate simultaneous evolution of severandtites
growing in random directions. That way, it is pbésito study the
phenomenon of competitive growth of dendrites, Whizew and
developed along different directions. Then, therd tve some
dendrites more developed than others, as the il have their
growth inhibited.

Acknowledgments

The authors wish to thank Universidade Federal iense
(UFF) and, in particular, its School of Industrad Metalurgical
Engineering (EEIMVR), and Fundacdo de Amparo a &isagdo
Estado do Rio de Janeiro (FAPERJ) for financialpgwpand the
necessary infrastructure for developing this redear

References

Caginalp, G., and Fife, P., 1986, “Phase-field rméthfor interface
boundaries”Physical Review Bvol. 33, pp. 7792-7794.

Chalmers, B., 1964, “Principles of SolidificatiorWiley, New York,
United States, p. 126.

Furtado, A.F., 2005, “Modelamento do Processo dkdicacdo e
Formacgé&o de Microestrutura pelo Método do CampoFdse” (Phase-

180 / Vol. XXXI, No. 3, July-September 2009

Alexandre Furtado Ferreira and Leonardo de Olivé Ferreira

Field Modelling of the Solidification and Microstture Formation
Process; in Portuguese), Ph.D. Thesis, Universidaateral Fluminense,
Volta Redonda, RJ, Brazil, p. 15.

Furtado, A.F., Castro, J.A., and Silva, A.J., 208 mulation of the
solidification of pure Nickel via the phase-field ethod,” Materials
ResearchVol. 9, pp. 349-356.

Kim, S.G., Kim, W.T., Lee, J.S., Ode, M., and Suzdk, 1999, “Large
scale simulation of dendritic growth in pure undeled melt by phase-field
model,”IS1J Internationa) Vol. 39, pp. 335-340.

Kobayashi, R., 1993, “Modeling and numerical sintiolas of dendritic
crystal growth,”Physical O Vol. 63, pp. 410-423.

Lee, J.S., and Suzuki, T., 1999, “Numerical sinmatof isothermal
dendritic growth by phase-field modéI3IJ International VVol.39, pp. 246-252.

Mullis, A.M., 2006, “The effect of the ratio of sdl to liquid
conductivity on the side-branching characteristidsdendrites within a
phase-field model of solidificationComputational Materials Scienc¥ol.
38, pp. 426-431.

Narski, J., and Picasso, M., 2007, “Adaptive fieiiements with high aspect
ratio for dendritic growth of a binary alloy inciad fluid flow induced by
shrinkage”, accepted inrComputer Methods in Applied Mechanics and
Engineering preprint available at http://iacs.epfl.ch/~picdbkrskiPicasso.pdf.

Ode, M., Lee, J.S., Kim, S.G., Kim, W.T., Suzuki, 2000, “Phase-
field model for solidification of ternary alloystSIJ International Vol. 40,
pp. 870-876.

Ode, M., and Suzuki, T., 2002, “Numerical simulati@f initial
evolution of Fe-C alloys using a phase-field modig1J Internationa) Vol.
42, pp. 368-374.

Patankar, S.V., 1980, “Numerical Heat Transfer dfdid Flow”,
McGraw-Hill-Hemisphere, New York, United States25.

Suwa, Y., Saito, Y., and Onodera, H., 2007, “Thalgeensional phase
field simulation of the effect of anisotropy in gréboundary mobility on
growth kinetics and morphology of grain structureComputational
Materials ScienceVol. 40, pp. 40-50.

Warren, J.A., and Boettinger, W.J., 1995, “Predittiof dendritic
growth and microsegregation patterns in a bindoyalsing the phase-field
model”, Acta Metall. Mater, vol.43, pp. 689-703.

Wynblatt, P., and Landa, A., 1999, “Computer sirtiala of surface
segregation in ternary alloysGomputational Materials Scienc&ol. 15,
pp. 250-263.

ABCM



